A Three Spatial Dimension Wave Latent Force Model for Describing Excitation Sources and Electric Potentials Produced by Deep Brain Stimulation
نویسندگان
چکیده
Deep brain stimulation (DBS) is a surgical treatment for Parkinson’s Disease. Static models based on quasi-static approximation are common approaches for DBS modeling. While this simplification has been validated for bioelectric sources, its application to rapid stimulation pulses, which contain more high-frequency power, may not be appropriate, as DBS therapeutic results depend on stimulus parameters such as frequency and pulse width, which are related to time variations of the electric field. We propose an alternative hybrid approach based on probabilistic models and differential equations, by using Gaussian processes and wave equation. Our model avoids quasi-static approximation, moreover, it is able to describe dynamic behavior of DBS. Therefore, the proposed model may be used to obtain a more realistic phenomenon description. The proposed model can also solve inverse problems, i.e. to recover the corresponding source of excitation, given electric potential distribution. The electric potential produced by a time-varying source was predicted using proposed model. For static sources, the electric potential produced by different electrode configurations were modeled. Four different sources of excitation were recovered by solving the inverse problem. We compare our outcomes with the electric potential obtained by solving Poisson’s equation using the Finite Element Method (FEM). Our approach is able to take into account time variations of the source and the produced field. Also, inverse problem can be addressed using the proposed model. The electric potential calculated with the proposed model is close to the potential obtained by solving Poisson’s equation using FEM.
منابع مشابه
A New Nonlinear Autoregressive Exogenous (NARX)-Based Intra-Spinal Stimulation Approach to Decode Brain Electrical Activity for Restoration of Leg Movement in Spinally-Injured Rabbits
This study aims at investigation of stimulation by using intra-spinal signals decoded from electrocorticography (ECoG) assessments to restore the movements of the leg in an animal model of spinal cord injury (SCI). The present work comprised of three steps. First, ECoG signals and the associated leg joint changes (hip, knee, and ankle) in sedated healthy rabbits were recorded in different trial...
متن کاملSpiral dynamics in a cardiac electromechanical model with a local electrical inhomogeneity
[Article] Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity Original Citation: Mesin L. (2012). Dynamics of spiral waves in a cardiac electromechanical model with a local electrical inhomogeneity. Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open...
متن کاملControl of epileptic seizures by electrical low frequency deep brain stimulation: A review of probable mechanisms
Epilepsy is the most common neurological disease with no definitive method in treatment. Notably, the main way to treat and control epileptic seizures is drug therapy. However, about 20-30% of patients with epilepsy are drug resistant and require other therapeutic manners. Deep brain stimulation is a new therapeutic strategy for these patients. Conspicuously, there are no clear answers for basi...
متن کاملPower optimization of a piezoelectric-based energy harvesting cantilever beam using surrogate model
Energy harvesting is a conventional method to collect the dissipated energy of a system. In this paper, we investigate the optimal location of a piezoelectric element to harvest maximum power concerning different excitation frequencies of a vibrating cantilever beam. The cantilever beam oscillates by a concentrated sinusoidal tip force, and a piezoelectric patch is integrated on the beam to gen...
متن کاملDeep brain stimulation in a rat model of post-traumatic stress disorder modifies forebrain neuronal activity and serum corticosterone
Objective(s): Post-traumatic stress disorder (PTSD), one of the most devastating kinds of anxiety disorders, is the consequence of a traumatic event followed by intense fear. In rats with contextual fear conditioning (CFC), a model of PTSD caused by CFC (electrical foot shock chamber), deep brain stimulation (DBS) alleviates CFC abnormalities.Materials and Methods: Forty Male Wistar rats (220–2...
متن کامل